Screening and Adverse Selection in Frictional Markets

Benjamin Lester
Philadelphia Fed

Venky Venkateswaran
NYU Stern

Ali Shourideh
Wharton

Ariel Zetlin-Jones
Carnegie Mellon University

May 2015

Disclaimer: The views expressed here do not necessarily reflect the views of the Federal Reserve Bank of Philadelphia.
Introduction

Many markets feature **adverse selection and imperfect competition**

- Examples: insurance, loans, financial securities
Introduction

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

- Examples: differential coverage, loan amounts, trade sizes
Introduction

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

- Examples: differential coverage, loan amounts, trade sizes

A unified theoretical framework is lacking

- Large empirical literature (and some theory)
- But typically restricts contracts and/or assumes perfect competition
Introduction

Many markets feature adverse selection and imperfect competition

- Examples: insurance, loans, financial securities

In these markets, contracts used to screen different types

- Examples: differential coverage, loan amounts, trade sizes

A unified theoretical framework is lacking

- Large empirical literature (and some theory)
- But typically restricts contracts and/or assumes perfect competition

But many important questions

- Recent push to make these markets more competitive, transparent
- Is this a good idea?
This Paper

A tractable model of adverse selection, screening and imperfect comp.

1. Complete characterization of the unique equilibrium
This Paper

A tractable model of adverse selection, screening and imperfect comp.

1. Complete characterization of the unique equilibrium

2. Explore positive predictions for distribution of contracts
This Paper

A tractable model of adverse selection, screening and imperfect comp.

1. Complete characterization of the unique equilibrium

2. Explore positive predictions for distribution of contracts

3. Policy experiments: changes in competition, transparency
Sketch of Model: Key Ingredients

• Adverse Selection: sellers have private info about quality

• A fraction μh have quality h, the rest quality ℓ

• Screening: Buyers offer general menus of non-linear contracts

• Price-quantity pairs: induce sellers to self-select

• Imperfect Comp: sellers receive either 1 or 2 offers (à la Burdett-Judd)

• Buyer competing with another with prob π, otherwise monopsonist.

• Contract offered before buyers know
Sketch of Model: Key Ingredients

- **Adverse Selection**: sellers have private info about quality
 - A fraction μ_h have quality h, the rest quality ℓ
Sketch of Model: Key Ingredients

- **Adverse Selection**: sellers have private info about quality
 - A fraction μ_h have quality h, the rest quality ℓ

- **Screening**: Buyers offer general menus of non-linear contracts
 - Price-quantity pairs: induce sellers to self-select
Sketch of Model: Key Ingredients

• **Adverse Selection**: sellers have private info about quality

 • A fraction μ_h have quality h, the rest quality ℓ

• **Screening**: Buyers offer general menus of non-linear contracts

 • Price-quantity pairs: induce sellers to self-select

• **Imperfect Comp**: sellers receive either 1 or 2 offers (à la Burdett-Judd)

 • Buyer competing with another with prob π, otherwise monopsonist.

 • Contract offered before buyers know
What We Know (Equilibrium)

\[\pi \]

\[\mu_h \]

\[0 \]

\[(\text{Monopsony}) \]

\[\bar{\mu}_h \]

\[1 \]

\[(\text{Perfect Comp}) \]
Perfect competition and “severe adverse selection” \(\Rightarrow\) least-cost separation.
Perfect competition and “mild adverse selection” \(\Rightarrow \) Mixed Strategy Eq.
What We Know (Equilibrium)

Monopsony and “severe adverse selection” \Rightarrow No Trade with High Type
What We Know (Equilibrium)

Monopsony and “mild adverse selection” ⇒ Full Trade

Pool High and Low Quality Sellers (Stiglitz ‘77)

No Trade With High Quality Seller (Stiglitz ‘77)

Only Mixed Strategy Equilibria (Rosenthal-Weiss ‘84)

Least Cost Separating Outcome (Rothschild-Stiglitz ‘76)

Monopsony and “mild adverse selection” ⇒ Full Trade
Objective

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.
Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Financial and Insurance markets typically characterized by imperfect comp.
Objective

Obj: Characterize eqm for any degree of adverse selection and imperfect comp.

Financial and Insurance markets typically characterized by imperfect comp.

What are the implications of imperfect comp. for....

- Terms of trade
- Welfare
- Policy
Summary of Findings

Methodology

• New techniques to characterize unique eqm for all \((\mu_h, \pi) \in [0, 1]^2\)
Summary of Findings

Methodology

- New techniques to characterize unique eqm for all \((\mu_h, \pi) \in [0, 1]^2\)
- Establish important (and general!) property of all equilibria:
 - *Strictly rank preserving*: offers for \(\ell\) and \(h\) ranked exactly the same
 - No specialization
- Positive Implications
 - Equilibrium can be pooling, separating, or mix
 - Separation when adverse selection severe, trading frictions mild
 - Pooling when adverse selection mild, trading frictions severe
- Normative Implications
 - Adverse selection severe: interior \(\pi\) maximizes surplus from trade
 - Adverse selection mild: welfare unambiguously decreasing in \(\pi\)
 - Increasing transparency/relaxing info frictions can ↑ or ↓ welfare
Summary of Findings

Methodology

• New techniques to characterize unique eqm for all \((\mu_h, \pi) \in [0, 1]^2\)
• Establish important (and general!) property of all equilibria:
 • *Strictly rank preserving*: offers for \(\ell\) and \(h\) ranked exactly the same
 • No specialization

Positive Implications

• Equilibrium can be pooling, separating, or mix
• Separation when adverse selection severe, trading frictions mild
• Pooling when adverse selection mild, trading frictions severe
Summary of Findings

Methodology

- New techniques to characterize unique eqm for all $\left(\mu_h, \pi\right) \in [0, 1]^2$
- Establish important (and general!) property of all equilibria:
 - *Strictly rank preserving*: offers for ℓ and h ranked exactly the same
 - No specialization

Positive Implications

- Equilibrium can be pooling, separating, or mix
- Separation when adverse selection severe, trading frictions mild
- Pooling when adverse selection mild, trading frictions severe

Normative Implications

- Adverse selection severe: *interior* π maximizes surplus from trade
- Adverse selection mild: welfare unambiguously decreasing in π
- Increasing transparency/relaxing info frictions can ↑ or ↓ welfare
Related Literature

Empirical

- Chiappori and Salanie (2000); Ivashina (2009); Einav et al. (2010); Einav et al. (2012)

Adverse Selection and Screening

- Rothschild and Stiglitz (1976); Dasgupta and Maskin (1986); Rosenthal and Weiss (1984); Mirrlees (1971); Stiglitz (1977); Maskin and Riley (1984); Guerrieri, Shimer and Wright (2010); Many, many others

Imperfect Competition and Selection

- Search Frictions: Burdett and Judd (1983); Garrett, Gomes, and Maestri (2014)

ENVIRONMENT
Model Environment

Large number of buyers and sellers
Model Environment

Large number of buyers and sellers

- Each Seller endowed with 1 divisible asset
 - Seller values asset at rate c_i
 - Two types of sellers $i \in \{l, h\}$ with prob. μ_i

- Buyer values type i asset at rate v_i
Model Environment

Large number of buyers and sellers

- Each Seller endowed with 1 divisible asset
 - Seller values asset at rate c_i
 - Two types of sellers $i \in \{l, h\}$ with prob. μ_i

- Buyer values type i asset at rate v_i

- If x units sold for transfer t, payoffs are
 - Seller: $t + (1 - x)c_i$
 - Buyer: $xv_i - t$

Assumptions:
- Gains to trade: $v_i > c_i$
- Lemons Assumption: $v_l < c_h$
- Adverse Selection: Only sellers know asset quality
Model Environment

Large number of buyers and sellers

- Each Seller endowed with 1 divisible asset
 - Seller values asset at rate c_i
 - Two types of sellers $i \in \{l, h\}$ with prob. μ_i

- Buyer values type i asset at rate v_i

- If x units sold for transfer t, payoffs are
 - Seller: $t + (1 - x)c_i$
 - Buyer: $xv_i - t$

- Assumptions:
 - Gains to trade: $v_i > c_i$
 - Lemons Assumption: $v_l < c_h$
 - Adverse Selection: Only sellers know asset quality
Model Environment

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection
Model Environment

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Search frictions

- Each seller receives 1 offer w.p. $1 - \pi$ and both w.p. π
 - Refer to seller with 1 offer as Captive
 - Refer to seller with 2 offers as non-Captive
Model Environment

Screening

- Buyers post arbitrary menus of exclusive contracts
- Screening menus intended to induce self-selection

Search frictions

- Each seller receives 1 offer w.p. $1 - \pi$ and both w.p. π
 - Refer to seller with 1 offer as Captive
 - Refer to seller with 2 offers as non-Captive

Stylized Model of Trade

- best examples: corporate loans market; securitization (maybe)
- other examples: information-based trading; insurance
Strategies

- Each buyer offers arbitrary menu of contracts \(\{(x_n, t_n)_{n \in \mathcal{N}}\} \)
- Captive seller’s choice: best \((x_n, t_n)\) from one buyer
- Non-captive seller’s choice: best \((x_n, t_n)\) among both buyers
Strategies

- Each buyer offers arbitrary menu of contracts \(\{(x_n, t_n)_{n \in \mathbb{N}}\} \)
- Captive seller’s choice: best \((x_n, t_n)\) from one buyer
- Non-captive seller’s choice: best \((x_n, t_n)\) among both buyers

Revelation Principle

sufficient to consider

- menus with two contracts \(z \equiv \{(x_l, t_l), (x_h, t_h)\} \)

\[(IC_j) : t_j + c_j(1 - x_j) \geq t_{-j} + c_j(1 - x_{-j}) \quad j \in \{h, l\}\]

- seller \(j\): chooses contract \(j\) from available the set of menus available
Suppose $\pi \in (0, 1)$: no symmetric pure strategy equilibrium exists
 - buyers can guarantee positive profits: trade only with captive types
 - in a pure strategy equilibrium: have to share non-captive types
Equilibrium Price Dispersion

- Suppose $\pi \in (0, 1)$: no symmetric pure strategy equilibrium exists
 - buyers can guarantee positive profits: trade only with captive types
 - in a pure strategy equilibrium: have to share non-captive types
 There is always an incentive to undercut

- Only mixed strategy equilibria possible
 \Rightarrow equilibrium features price dispersion
 \Rightarrow equilibrium described by buyers’ distribution over menus
Equilibrium definition

A symmetric equilibrium is a distribution \(\Phi(z) \) such that almost all \(z \) satisfy,

1. **Incentive compatibility:**

\[
 t_j + c_j(1 - x_j) \geq t_{-j} + c_j(1 - x_{-j}) \quad j \in \{h, l\}
\]

2. **Seller optimality:**

\(\chi_i(z, z') \) maximizes her utility

3. **Buyer optimality:** for each \(z \in \text{Supp}(\Phi) \)

\[
 z \in \arg \max_z \sum_{i \in \{l, h\}} \mu_i(v_i x_i - t_i) \left[1 - \pi + \pi \int_{z'} \chi_i(z, z') \Phi(dz') \right] \\
\]
Characterization

Equilibrium described by non-degenerate distribution in 4 dimensions
Characterization

Equilibrium described by non-degenerate distribution in 4 dimensions

Proceed in 4 steps

1. Show that menus can be summarized by a pair of utilities \((u_h, u_l)\)
 - Reduces dimensionality of problem to distribution in 2 dimensions

2. Show there is a 1-1 mapping between \(u_l\) and \(u_h\)
 - Reduces problem to distribution in 1 dimension + a monotonic function

3. Construct Equilibrium

4. Show that constructed equilibrium is unique
Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: \(x_l = 1 \)
- IC\(_l\) binds: \(t_l = t_h + c_l(1 - x_h) \)
A utility representation

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: \(x_l = 1 \)
- IC\(_l\) binds: \(t_l = t_h + c_l(1 - x_h) \)

Result

Equilibrium menus can be represented by \((u_h, u_l)\) with corresponding allocations

\[
\begin{align*}
 t_l &= u_l \\
 x_h &= 1 - \frac{u_h - u_l}{c_h - c_l} \\
 t_h &= \frac{u_l c_h - u_h c_l}{c_h - c_l}
\end{align*}
\]
A utility representation

Result (Dasgupta and Maskin (1986))

In all menus offered in equilibrium,

- the low types trades everything: \(x_l = 1 \)
- IC\(_l\) binds: \(t_l = t_h + c_l(1 - x_h) \)

Result

Equilibrium menus can be represented by \((u_h, u_l)\) with corresponding allocations

\[
\begin{align*}
 t_l &= u_l \\
 x_h &= 1 - \frac{u_h - u_l}{c_h - c_l} \\
 t_h &= \frac{u_l c_h - u_h c_l}{c_h - c_l}
\end{align*}
\]

Since we must have \(0 \leq x_h \leq 1\),

\[
 c_h - c_l \geq u_h - u_l \geq 0
\]
A utility representation

Marginal distributions

\[F_j(u) = \int_{z'} 1 \left[t'_j + c_j (1 - x'_j) \leq u_j \right] \, d\Phi(z') \quad j \in \{h, l\} \]
A utility representation

Marginal distributions

\[F_j(u_j) = \int_{z'} 1 \left[t'_j + c_j (1 - x'_j) \leq u_j \right] d\Phi(z') \quad j \in \{h, l\} \]

Then, each buyer solves

\[\Pi(u_h, u_l) = \max_{u_l \geq c_l, \ u_h \geq c_h} \sum_{j \in \{h, l\}} \mu_j \left[1 - \pi + \pi F_j(u_j) \right] \Pi_j(u_h, u_l) \]

\[\text{s. t.} \quad c_h - c_l \geq u_h - u_l \geq 0 \]
A utility representation

Marginal distributions

\[F_j(u_j) = \int_{z'} 1 \left[t'_j + c_j (1 - x'_j) \leq u_j \right] d\Phi(z') \quad j \in \{h, l\} \]

Then, each buyer solves

\[
\Pi(u_h, u_l) = \max_{u_l \geq c_l, \ u_h \geq c_h} \sum_{j \in \{l, h\}} \mu_j \left[1 - \pi + \pi F_j(u_j) \right] \Pi_j(u_h, u_l)
\]

s. t. \[c_h - c_l \geq u_h - u_l \geq 0 \]

with \[\Pi_l(u_h, u_l) \equiv v_l x_l - t_l = v_l - u_l \]

\[\Pi_h(u_h, u_l) \equiv v_h x_h - t_h = v_h - u_h \frac{v_h - c_l}{c_h - c_l} + u_l \frac{v_h - c_h}{c_h - c_l} \]
A utility representation

Marginal distributions

\[F_j(u_j) = \int_{z'} 1 \left[t'_j + c_j (1 - x'_j) \leq u_j \right] d\Phi(z') \quad j \in \{h, l\} \]

Then, each buyer solves

\[\Pi(u_h, u_l) = \max_{u_l \geq c_l, \ u_h \geq c_h} \sum_{j \in \{l, h\}} \mu_j \left[1 - \pi + \pi F_j(u_j) \right] \Pi_j(u_h, u_l) \]

s. t. \[c_h - c_l \geq u_h - u_l \geq 0 \]

with \[\Pi_l(u_h, u_l) \equiv v_l x_l - t_l = v_l - u_l \]

\[\Pi_h(u_h, u_l) \equiv v_h x_h - t_h = v_h - u_h \frac{v_h - c_l}{c_h - c_l} + u_l \frac{v_h - c_h}{c_h - c_l} \]
A utility representation

Marginal distributions

\[F_j(u_j) = \int_{z'} 1 \left[t'_j + c_j (1 - x'_j) \leq u_j \right] d\Phi(z') \quad j \in \{h, l\} \]

Then, each buyer solves

\[\Pi(u_h, u_l) = \max_{u_l \geq c_l, \ u_h \geq c_h} \sum_{j \in \{l, h\}} \mu_j \left[1 - \pi + \pi F_j(u_j) \right] \Pi_j(u_h, u_l) \]

s. t. \quad c_h - c_l \geq u_h - u_l \geq 0

with \quad \Pi_l(u_h, u_l) \equiv v_l x_l - t_l = v_l - u_l

\quad \Pi_h(u_h, u_l) \equiv v_h x_h - t_h = v_h - u_h \frac{v_h - c_l}{c_h - c_l} + u_l \frac{v_h - c_h}{c_h - c_l}

Need to characterize the two linked distributions \(F_l \) and \(F_h \)!
Further Simplifying the Characterization

Result

F_l and F_h have connected support and are continuous.

- Except for a knife-edge case (see paper)
- Proof more involved than standard case because of interdependencies
Further Simplifying the Characterization

Result

F_l and F_h have connected support and are continuous.

- Except for a knife-edge case (see paper)
- Proof more involved than standard case because of interdependencies

Result

The profit function $\Pi(u_h, u_l)$ is strictly supermodular.

- Intuition: $u_l \uparrow \Rightarrow \Pi_h \uparrow \Rightarrow$ stronger incentives to attract high types
- $\Rightarrow U_h(u_l) \equiv \arg\max_{u_h} \Pi(u_h, u_l)$ is weakly increasing
Strict Rank Preserving

Theorem

\[U_h(u_l) \text{ is a strictly increasing function.} \]
Strict Rank Preserving

Theorem

$U_h(u_l)$ is a strictly increasing function.

Idea of Proof

- $U_h(u_l)$ increasing due to super-modularity of profit function
- F_l and F_h have no holes or mass points imply U_h is strictly increasing and not a correspondence
Strict Rank Preserving

Theorem

\[U_h(u_l) \text{ is a strictly increasing function.} \]

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types \(F_l(u_l) = F_h(U_h(u_l)) \)
- Greatly simplifies the analysis: only have to find \(F_l(u_l) \) and \(U_h(u_l) \)

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positively correlated
- Robust to any number of types
- Relies only on utility representation and ability to show distributions are well behaved
Strict Rank Preserving

Theorem

\[U_h(u_l) \text{ is a strictly increasing function.} \]

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types \(F_i(u_l) = F_h(U_h(u_l)) \)
- Greatly simplifies the analysis: only have to find \(F_i(u_l) \) and \(U_h(u_l) \)

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positively correlated
- Robust to any number of types
- Relies only on utility representation and ability to show distributions are well behaved
Strict Rank Preserving

Theorem

\[U_h(u_l) \text{ is a strictly increasing function.} \]

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types \(F_l(u_l) = F_h(U_h(u_l)) \)
- Greatly simplifies the analysis: only have to find \(F_l(u_l) \) and \(U_h(u_l) \)

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positive correlated
Strict Rank Preserving

Theorem

$U_h(u_l)$ is a *strictly increasing function*.

Implications for Characterization

- Rank ordering of equilibrium menus identical across types
- Menus attract same fraction of both types $F_i(u_l) = F_h(U_h(u_l))$
- Greatly simplifies the analysis: only have to find $F_i(u_l)$ and $U_h(u_l)$

Broader Implications

- Buyers do not specialize or attract only a subset of types
- Terms of trade offered to both types are positive correlated

Robust to any number of types

- Relies only on utility representation and ability to show distributions are well behaved
CONSTRUCTING EQUILIBRIA
Equilibria: The two limit cases

Monopsony: \(\pi = 0 \)

Bertrand: \(\pi = 1 \)
Equilibria: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h = 0$ and $\Pi_l > \Pi_h = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Pooling with $x_h = x_l = 1$ and $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Bertrand: $\pi = 1$
Equilibria: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h = 0$ and $\Pi_l > \Pi_h = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Pooling with $x_h = x_l = 1$ and $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi_h = \Pi_l = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi = 0$, but $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization
Equilibria: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h = 0$ and $\Pi_l > \Pi_h = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Pooling with $x_h = x_l = 1$ and $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi_h = \Pi_l = 0$
 - No Cross-subsidization
- $\mu_h \geq \bar{\mu}_h \Rightarrow$ Sep. with $x_h < 1$, $\Pi = 0$, but $\Pi_h > 0 > \Pi_l$
 - Cross-subsidization

Intuition: Higher $\mu_h \Rightarrow$ Relaxing IC^l more attractive
Types of equilibria in the middle

No cross-subsidization

Cross-subsidization

\[\mu_h \times \Pi_h > \Pi_l > 0 \]

\[\mu_h \times (\Pi_l, \Pi_h) \geq 0 \]

\[u_h(\mu_l) \neq u_l^{2/4} \]
Types of equilibria in the middle

High μ_h
- $\Pi_h > 0 > \Pi_l$
- All separating, all pooling or a mix

Low μ_h
- $\Pi_l, \Pi_h \geq 0$
- All separating, $U_h(u_l) \neq u_l$
No cross-subsidization: Characterization

Focus on separating equilibrium in no-cross subsidization region

Recall problem of a buyer:

\[
\Pi(u_h, u_l) = \max_{u_l \geq c_l, \ u_h \geq c_h} \sum_{j \in \{l, h\}} \mu_j [1 - \pi + \pi F_j(u_j)] \Pi_j(u_h, u_l)
\]

s. t. \[c_h - c_l \geq u_h - u_l \geq 0\]
No cross-subsidization: Characterization

Focus on separating equilibrium in no-cross subsidization region

Recall problem of a buyer:

\[
\Pi(u_h, u_l) = \max_{u_l \geq c_l, \ u_h \geq c_h} \ \sum_{j \in \{l, h\}} \mu_j \left[1 - \pi + \pi F_j(u_j)\right] \Pi_j(u_h, u_l)
\]

s. t. \quad c_h - c_l \geq u_h - u_l \geq 0

- In separating equilibrium we construct, \(c_h - c_l > u_h - u_l > 0 \)
- Sufficient to ensure local deviations unprofitable
No cross-subsidization: Characterization

Marginal benefits vs costs of increasing u_l

\[
\frac{\pi f_i (u_l) \Pi_l}{1 - \pi + \pi F_l (u_l)} + \frac{\mu_h}{1 - \mu_h} \frac{v_h - c_h}{c_h - c_l} = \frac{1}{MC}
\]

MB of more low types

MB of relaxing IC_l
No cross-subsidization: Characterization

Marginal benefits vs costs of increasing u_l

$$\frac{\pi f_l(u_l) \Pi_l}{1 - \pi + \pi F_l(u_l)} + \frac{\mu_h \nu_h - c_h}{1 - \mu_h} \frac{c_h - c_l}{c_l} = \frac{1}{MC}$$

MB of more low types
MB of relaxing IC_l

Boundary conditions

$$F_l(c_l) = 0 \quad F_l(\bar{u}_l) = 1 \quad \rightarrow \quad F_l(u_l)$$

Equal profit condition

$$[1 - \pi + \pi F_l(u_l)] \Pi(\bar{U}_h, u_l) = \bar{\Pi} \quad \rightarrow \quad U_h(u_l)$$
No cross-subsidization: Characterization

Marginal benefits vs costs of increasing u_l

$$\frac{\pi f_l(u_l) \Pi_l}{1 - \pi + \pi F_l(u_l)} + \frac{\mu_h v_h - c_h}{1 - \mu_h c_h - c_l} = \frac{1}{MC}$$

MB of more low types

MB of relaxing IC_l

Boundary conditions

$$F_l(c_l) = 0 \quad F_l(\bar{u}_l) = 1 \quad \rightarrow \quad F_l(u_l)$$

Equal profit condition

$$[1 - \pi + \pi F_l(u_l)] \Pi(U_h, u_l) = \bar{\Pi} \quad \rightarrow \quad U_h(u_l)$$

Pursue similar construction in other regions of parameter space
Equilibrium Regions in the Middle

- No cross-subsidization
- Separation
- Pooling
- Mix

More Competition implies less pooling

- Gains to cream-skimming increase in π
- Milder Adverse Selection (higher μ_h) implies more pooling
- Increased incentives to trade high volume
- Increased cost of cream-skimming

Price Dispersion Theorem

For every (π, μ_h) there is a unique equilibrium.
Equilibrium Regions in the Middle

More Competition implies less pooling
- Gains to cream-skimming increase in π

Milder Adverse Selection (higher μ_h) implies more pooling
- increased incentives to trade high volume
- increased cost of cream-skimming

Price Dispersion
Equilibrium Regions in the Middle

- More Competition implies less pooling
 - Gains to cream-skimming increase in π

- Milder Adverse Selection (higher μ_h) implies more pooling
 - increased incentives to trade high volume
 - increased cost of cream-skimming

Theorem

For every (π, μ_h) there is a unique equilibrium.
EQUILIBRIUM IMPLICATIONS
Positive and Normative Implications

Is improving competition desirable for volume or welfare?

- For high μ_h, monopsony dominates perfect competition
- For low μ_h, perfect competition dominates monopsony
- Will show: for low μ_h, welfare maximized at interior π
Positive and Normative Implications

Is improving competition desirable for volume or welfare?

- For high μ_h, monopsony dominates perfect competition
- For low μ_h, perfect competition dominates monopsony
- Will show: for low μ_h, welfare maximized at interior π

Is increasing transparency desirable?

- Allowing insurers, loan officers, dealers to discriminate on observables?
- Interpret increased transparency as increased spread in μ_h
- Desirability depends on curvature of welfare function with respect to μ_h
- Will show: Concavity/Convexity of welfare function depends on π, μ_h
EQUILIBRIUM IMPLICATIONS: COMPETITION
Assume μ_h in no cross-subsidization region
Competition with No Cross-Subsidization

Assume μ_h in no cross-subsidization region

Equilibrium Distribution and $U_h(u_l)$ for $\pi = 0.2$

Shaded Region indicates support of F_l
Competition with No Cross-Subsidization

Assume μ_h in no cross-subsidization region

Equilibrium Distribution and $U_h(u_l)$ for $\pi = 0.5$

- Shaded Region indicates support of F_l

- Increase in π increases F_l in sense of FOSD
Competition with No Cross-Subsidization

Assume μ_h in no cross-subsidization region

Equilibrium Distribution and $U_h(u_l)$ for $\pi = 0.9$

Shaded Region indicates support of F_l

- Increase in π increases F_l in sense of FOSD
- Driven by increased competition for (abundant) low-quality sellers
Competition with No Cross-Subsidization

How is trade volume related to U_h?

$$x_h(u_l) = 1 - \frac{U_h(u_l) - u_l}{c_h - c_l}$$

$$x_h'(u_l) > 0 \iff U_h'(u_l) > 1$$
Competition with No Cross-Subsidization

Equilibrium Objects for $\pi = 0.2$
Competition with No Cross-Subsidization

Equilibrium Objects for $\pi = 0.5$

- From low π, increase in π increases volume
Competition with No Cross-Subsidization

Equilibrium Objects for $\pi = 0.9$

- From moderate π, increase in π decreases volume
Competition and Welfare

When no cross-subsidization

\[W(\mu_h, \pi) = (1 - \mu_h)(v_l - c_l) + \mu_h(v_h - c_h) \int x_h(u_l)\,dF(u_l) \]

Why is welfare decreasing?

- \(\mu_h \) implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \(\Rightarrow \) greater dispersion in prices
- Implies \(U'_h(u_l) > 1 \)

Welfare maximized for interior
Competition and Welfare

When no cross-subsidization

\[W(\mu_h, \pi) = (1 - \mu_h)(v_l - c_l) + \mu_h(v_h - c_h) \int x_h(u_l) dF(u_l) \]
Competition and Welfare

When no cross-subsidization

\[
W(\mu_h, \pi) = (1 - \mu_h)(v_l - c_l) + \mu_h(v_h - c_h) \int x_h(u_l) dF(u_l)
\]

Why is welfare decreasing?

- \(\mu_h\) low implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \(\Rightarrow\) greater dispersion in prices
- Implies \(U'_h(u_l) > 1\)

Welfare maximized for interior \(\pi\)
Competition and Welfare

When no cross-subsidization

\[W(\mu_h, \pi) = (1 - \mu_h)(v - c_l) + \mu_h(v_h - c_h) \int x_h(u_l) dF(u_l) \]

Why is welfare decreasing?
- \(\mu_h \) low implies few high types
- Competition less fierce for high types
- Demand from high types relatively inelastic
- Equal profits \(\Rightarrow \) greater dispersion in prices
- Implies \(U'_h(u_l) > 1 \)

Welfare maximized for interior \(\pi \)

With Cross-Subsidization, welfare (weakly) maximized in monopsony outcome
- Full trade \(\Rightarrow \) all gains to trade exhausted
EQUILIBRIUM IMPLICATIONS: TRANSPARENCY
Desirability of Transparency

Do the following policies improve welfare?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades
Desirability of Transparency

Do the following policies improve welfare?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_h

- Each seller has individual μ'_h; Buyers know distribution over μ'_h
- Buyers restricted to offering contracts associated with $E[\mu'_h]$
- Under transparency, buyers allowed to offer μ_h-specific menus
- Need to compare $E[W(\mu'_h, \pi)]$ to $W(E[\mu'_h], \pi)$

Is Transparency Desirable? Answer: Depends on π!

- W is linear when $\pi = 0$ and $\pi = 1$ ⇒ no effect on welfare
- W is concave when π is high ⇒ bad for welfare
Desirability of Transparency

Do the following policies improve welfare?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_h

- Each seller has individual μ'_h; Buyers know distribution over μ'_h
- Buyers restricted to offering contracts associated with $E[\mu'_h]$
- Under transparency, buyers allowed to offer μ_h-specific menus
- Need to compare $E[W(\mu'_h, \pi)]$ to $W(E[\mu'_h], \pi)$

Is Transparency Desirable? Answer: Depends on π!
Desirability of Transparency

Do the following policies improve welfare?

- Allowing insurance providers to discriminate based on observables
- Introducing credit scores in loan markets
- Requiring OTC market participants to disclose trades

In model, interpret increased transparency as mean-preserving spread of μ_h

- Each seller has individual μ'_h; Buyers know distribution over μ'_h
- Buyers restricted to offering contracts associated with $E[\mu'_h]$
- Under transparency, buyers allowed to offer μ_h-specific menus
- Need to compare $E[W(\mu'_h, \pi)]$ to $W(E[\mu'_h], \pi)$

Is Transparency Desirable? Answer: Depends on π!

- W is linear when $\pi = 0$ and $\pi = 1 \Rightarrow$ no effect on welfare
- W is concave when π is high \Rightarrow bad for welfare
Desirability of Transparency: The two limit cases

Monopsony: \(\pi = 0 \)

Bertrand: \(\pi = 1 \)
Desirability of Transparency: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow x_h = 0$ so that

 \[W(\mu_h) = (1 - \mu_h) v_l + \mu_h c_h \]

- $\mu_h > \bar{\mu}_h \Rightarrow x_h = 1$ so that

 \[W(\mu_h) = (1 - \mu_h) v_l + \mu_h v_h \]

- Welfare is linear in μ_h

Bertrand: $\pi = 1$
Desirability of Transparency: The two limit cases

Monopsony: $\pi = 0$

- $\mu_h < \bar{\mu}_h \Rightarrow x_h = 0$ so that
 \[W(\mu_h) = (1 - \mu_h)v_l + \mu_h c_h \]

- $\mu_h > \bar{\mu}_h \Rightarrow x_h = 1$ so that
 \[W(\mu_h) = (1 - \mu_h)v_l + \mu_h v_h \]

- Welfare is linear in μ_h

Bertrand: $\pi = 1$

- $\mu_h < \bar{\mu}_h \Rightarrow x_h$ independent of μ_h
- Implies welfare is linear in μ_h
Desirability of Transparency: The two limit cases

Monopsony: \(\pi = 0 \)

- \(\mu_h < \bar{\mu}_h \Rightarrow x_h = 0 \) so that
 \[
 W(\mu_h) = (1 - \mu_h)v_l + \mu_h c_h
 \]

- \(\mu_h > \bar{\mu}_h \Rightarrow x_h = 1 \) so that
 \[
 W(\mu_h) = (1 - \mu_h)v_l + \mu_h v_h
 \]

- Welfare is linear in \(\mu_h \)

Bertrand: \(\pi = 1 \)

- \(\mu_h < \bar{\mu}_h \Rightarrow x_h \) independent of \(\mu_h \)

- Implies welfare is linear in \(\mu_h \)

In these cases, welfare is linear in \(\mu_h \) so that mean-preserving spread (locally) has no impact on welfare
Desirability of Transparency: The general cases

- With cross-subsidization, welfare is concave
 \(\Rightarrow \) increases in transparency harm welfare

- Without cross-subsidization, welfare is concave only for high \(\pi \)
 \(\Rightarrow \) increases in transparency harm welfare when markets competitive
Conclusion

Methodological contribution

- Imperfect competition and adverse selection with optimal contracts
- Rich predictions for the distribution of observed trades

Substantive insights

- Depending on parameters, pooling and/or separating menus in equilibrium
- Competition, transparency can be bad for welfare

Work in progress

- Generalize to N types, curved utility
- Non-exclusive trading
No cross-subsidization: Price vs quantity (conditional)

\[
\pi = 0.2
\]

\[
\pi = 0.5
\]

\[
\pi = 0.95
\]

Correlation \(< 0 \) for suff. high \(\pi \)

A strategy to infer competitiveness?