Small and Orthodox Fiscal Multipliers at the Zero Lower Bound

R. Anton Braun (FRB Atlanta)
Lena Körber (LSE)
Yuichiro Waki (University of Queensland)

End of Year Macroeconomics Conference
December 26, 2014

Disclaimer: The views expressed in this paper are our own personal views and not those of the Federal Reserve System or Bank of England
Outline

1. Introduction
2. Model
3. Our Parameterization
4. Results for the Great Recession
5. Conclusions
Motivation

- The nominal interest rate has fallen to (almost) zero in many countries around the world.

- Does fiscal policy have large and qualitatively different effects when the nominal interest rate is zero?

- An emerging consensus in the New Keynesian (NK) literature is that the answer is yes.
Labor tax increase

- **In normal times:** labor tax ↑ → hours ↓

- **At the ZLB:** labor tax ↑ → hours ↑
 ("Paradox of Toil", Eggertsson(2011))
Government spending multiplier

- **In normal times:** government spending multiplier ≤ 1

- **At the ZLB:** government spending multiplier $>> 1$
 (Christiano, Eichenbaum and Rebelo (2011))

 \rightarrow Policy implication: Fiscal stimulus is particularly effective when monetary policy is constrained by the ZLB.
Our paper

- Provides new evidence that the properties of fiscal policy in the NK model at the ZLB and away from the ZLB are generally quite similar:
 - labor tax $\uparrow \rightarrow$ hours \downarrow, or hours are inelastic
 - government spending multiplier ≈ 1.

- How do we reach this conclusion?
 - Formulate a tractable, nonlinear, stochastic NK model with an occasionally binding ZLB.
 - Calibrate shock parameters to reproduce declines in GDP and inflation from the Great Recession and Great Depression.
 - Analyze the global properties of the model using analytical and numerical methods.
Fiscal multipliers are *generally* small

- **Great Recession**
 1. GDP government purchase multiplier is about 1.15 or less.
 2. Employment generally falls or shows no response at all to an increase in the labor tax.

- **Great Depression**
 1. GDP government purchase multiplier is 1.13 or less.
 2. Employment falls when the labor tax is increased.
Fiscal multiplier asymptotes

- Near asymptotes fiscal multipliers can be arbitrarily large and positive or large and negative.

- This region of the parameter space is small.

- Woodford (2011) and Carlstrom, Fuerst and Paustian (2012) have also documented asymptotes using loglinearized solutions.
What explains the difference between our results and the previous literature?

- **Parameterization of the model**
 - This paper uses parameterizations that can reproduce output and inflation responses from the Great Recession or the Great Depression.
 - Some previous work uses parameterizations of the NK model that cannot reproduce these responses.

- **Solution method**
 - Loglinear solutions may get the local dynamics of the model wrong.
Outline

1. Introduction
2. Model
3. Our Parameterization
4. Results for the Great Recession
5. Conclusions
Outline

1 Introduction

2 Model

3 Our Parameterization

4 Results for the Great Recession

5 Conclusions
2. Model

Overview

- Standard New Keynesian model of a closed economy.
- Nominal price rigidity à la Rotemberg (1996) adjustment costs.
- No need to loglinearize.
- Equilibrium employment and inflation in the ZLB state can be found by solving two nonlinear equations.
1. Model

State of the economy

- State $s \in \{H, L\}$.
- 2 state Markov chain with L as the initial state.
- Stays in L with probability p. (Persistence)
- H is the absorbing state.
- Household’s one-step discount factor and firms’ technology depends on s.
- Fiscal policy is also Markov in s.
1. Model

Households

- Momentary utility function:
 \[
 \frac{c_t^{1-\sigma}}{1-\sigma} - \frac{h_t^{1+\nu}}{1+\nu}
 \]

- One-step preference discount factor \(\beta \times d_{t+1} \) \((t + 1 \to t)\).

- \(d_{t+1} = d^L \) in the \(L \) state, \(d_{t+1} = 1 \) in the \(H \) state.

- Labor income subject to linear tax \(\tau_{w,t} \).

- Optimality condition:
 \[
 1 = \beta d_{t+1} E_t \left[\frac{c_{t+1}^{-\sigma}}{c_t^{-\sigma}} \frac{1}{1 + \pi_{t+1}} \right] (1 + R_t)
 \]

 \[
 w_t = \frac{h_t^\nu}{c_t^{-\sigma}(1 - \tau_{w,t})}
 \]

2. Model

Final good firms

- Produce the final foods using intermediate goods \(i \in [0, 1] \).
- CES aggregator:
 \[
 y_t = \left[\int_0^1 y_t(i)^{\frac{\theta}{\theta-1}} \, di \right]^{\frac{\theta-1}{\theta}}.
 \]
- Profit maximizing input demand:
 \[
 y_t^d(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} y_t
 \]
 where \(P_t = \left[\int_0^1 p_t(i)^{1-\theta} \, di \right]^{\frac{1}{1-\theta}} \) is the price of the final good and \(p_t(i) \) is the price of intermediate good \(i \).
2. Model

Intermediate goods producers

- Use linear production function:

\[y_t(i) = z_t h_t(i), \]

which implies that the marginal cost is

\[w_t / z_t. \]

- \(z_t = z^L \) in the \(L \) state, \(z_t = 1 \) in the \(H \) state.
2. Model

Intermediate goods producers

- Set prices \(\{ p_t(i) \}_{t=0}^{\infty} \) to maximize PV of profits subject to the demand function.

- Momentary profit function:

\[
(1 + \tau_s) \frac{p_t(i)}{P_t} y_t(i) - \frac{w_t}{z_t} \frac{\gamma}{2} \left(\frac{p_t(i)}{p_{t-1}(i)} - 1 \right)^2 y_t.
\]

- \(y_t = z_t h_t \) is the aggregate production.

- In a symmetric equilibrium the fraction \(\frac{\gamma}{2} \pi_t^2 \) of agg. production is used for price adjustment.
2. Model

Policy

- Fiscal policy is Ricardian.
- The Central Bank follows a Taylor rule:

\[R_t = \max(0, r_t + \phi_\pi \pi_t + \phi_y \hat{gdp}_t) \]

where \(r_t = \frac{1}{\beta d_{t+1}} - 1 \).
2. Model

Aggregate resource constraint

- Aggregate resource constraint:

\[GDP_t \equiv c_t + g_t = (1 - \kappa_t)z_t h_t. \]

- \(\kappa_t \equiv \frac{\gamma}{2} \pi^2_t \) represents the resource costs of price adjustment.

- \(\kappa_t \) plays an important role in a severe, deflationary recession.

1. Magnitude and sign of employment and GDP responses can differ.
2. \(\kappa \) disappears when loglinearized about a constant price steady-state.
3. If the economy is far from the steady state this problem can be severe.
4. Same issue arises under Calvo pricing.
2. Model

ZLB Markov equilibrium of Eggertsson and Woodford (2003)

- Markov equilibrium with state \(s \in \{L, H\} \).

 (Fiscal policy is also Markov in \(s \).)

- Assume: Zero inflation steady-state occurs in state H.

- Assume: ZLB binds in state L. (Taylor rule checked).

- ZLB Equilibrium: \((c^L, h^L, w^L, \pi^L)\).

 - Eqm condition reduces to two equations with \((\pi^L, h^L)\).
 - ”AD” and ”AS” equations.
2. Model

Equilibrium condition at the ZLB

1. NKPC:

\[\pi^L (1 + \pi^L) = \frac{\theta}{\gamma} \left(\frac{w^L}{z^L} - 1 \right) + p \beta d^L \pi^L (1 + \pi^L) \]

2. Euler equation:

\[(c^L)^{-\sigma} = p \beta d^L (c^L)^{-\sigma} \frac{1 + \pi^L}{1 + \pi^L} + (1 - p) \beta d^L c^{-\sigma} \]

3. Labor supply:

\[w^L = (c^L)^{\sigma} (h^L)^{\nu} / (1 - \tau_w^L). \]

4. Resource constraint:

\[c^L = (1 - \eta^L - \kappa^L) z^L h^L. \quad (g^L = \eta^L z^L h^L.) \]
2. Model

Equilibrium employment and inflation at the ZLB

1. **AS:** Price setting condition (+ labor supply and resource constraint)

\[\pi^L(1 + \pi^L) = \frac{\theta}{\gamma} \left(\frac{(1 - \kappa^L - \eta^L)^\sigma (h^L)^{\sigma + \nu}}{(1 - \tau^L_w)(z^L)^{1 - \sigma}} - 1 \right) + p \beta d^L \pi^L (1 + \pi^L) \]

2. **AD:** Euler equation (+ production function and resource constraint)

\[1 = p \left(\frac{\beta d^L}{1 + \pi^L} \right) + (1 - p) \beta d^L \left(\frac{(1 - \kappa^L - \eta^L)^\sigma (h^L)^\sigma}{(1 - \eta)^\sigma h^\sigma} \right) \]

3. \(R^{\text{Taylor}} < 0 \)
Outline

1. Introduction
2. Model
3. Our Parameterization
4. Results for the Great Recession
5. Conclusions
5. Our Parameterization

Estimated parameters

- Key parameters are estimated by Bayesian methods using the loglinear equilibrium conditions.
- Model: loglinearized three-equation model (quarterly)
- Shocks: technology, demand, and monetary policy.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Prior mean</th>
<th>Prior std. dev.</th>
<th>Posterior mode</th>
<th>Posterior 5%</th>
<th>Posterior 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν</td>
<td>Labour supply elasticity</td>
<td>gamma</td>
<td>0.5</td>
<td>0.25</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td>γ</td>
<td>Price adj. costs</td>
<td>normal</td>
<td>150</td>
<td>200</td>
<td>458</td>
<td>315</td>
</tr>
<tr>
<td>ϕ_y</td>
<td>TR coefficient on GDP</td>
<td>normal</td>
<td>0</td>
<td>1</td>
<td>1.63</td>
<td>1.06</td>
</tr>
<tr>
<td>ϕ_π</td>
<td>TR coefficient on inflation</td>
<td>normal</td>
<td>3</td>
<td>1</td>
<td>3.46</td>
<td>2.38</td>
</tr>
<tr>
<td>ρ_r</td>
<td>TR coefficient on R_{t-1}</td>
<td>beta</td>
<td>0.75</td>
<td>0.1</td>
<td>0.86</td>
<td>0.81</td>
</tr>
</tbody>
</table>
5. Our Parameterization

Other parameters

- The remaining parameters are fixed a priori as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Discount factor</td>
<td>0.997</td>
</tr>
<tr>
<td>σ Relative risk aversion</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{\theta}{\theta - 1}$ Steady state gross markup</td>
<td>1.15</td>
</tr>
</tbody>
</table>

- Resulting slope of NK Phillips Curve is: 0.021.
- Close to estimate of Rotemberg and Woodford (1997): 0.024.
5. Our Parameterization

Targets from the Great Recession and the Great Depression

<table>
<thead>
<tr>
<th></th>
<th>Inflation</th>
<th>GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Recession (2008-09)</td>
<td>-1%</td>
<td>-7%</td>
</tr>
<tr>
<td>Great Depression (1929-30s)</td>
<td>-10%</td>
<td>-30%</td>
</tr>
</tbody>
</table>

- Consider a wide range of p (duration of the ZLB) $\in [0, 0.95]$.
- For each p we adjust z^L and d^L to reproduce these numbers at ZLB.
- This presentation focuses on the GR calibration.
Outline

1. Introduction
2. Model
3. Our Parameterization
4. Results for the Great Recession
5. Conclusions
All equilibria are MSV solutions.

Left case doesn’t occur if loglinearized around zero inflation steady-state.

Measure policy effects by perturbing fiscal policy in state L.
6. Results for the Great Recession

The response of hours to a labor tax increase

<table>
<thead>
<tr>
<th>Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) p < 0.6</td>
<td>AS shifts up. Employment ↓ for the left and the right cases.</td>
</tr>
<tr>
<td>(ii) 0.6 < p < 0.86</td>
<td>Employment ↓ for the left and the right cases. Employment ↑ for the middle case.</td>
</tr>
<tr>
<td>(iii) p > 0.87</td>
<td>Employment ↑ for the middle case.</td>
</tr>
</tbody>
</table>

- *Labor tax ↑ ⇒ AS shifts up.*
- *Employment ↓ for the left and the right cases.*
- *Employment ↑ for the middle case.*
6. Results for the Great Recession

The response of hours to a labor tax increase

- Third equilibrium can exist (red).
- Labor tax multiplier proportional to \(\frac{1}{\text{slope}(AD)/\text{slope}(AS)-1} \).
6. Results for the Great Recession

Government spending multiplier

- Government spending $\uparrow \approx$ AD shifts toward the right.
- Inflation \uparrow for the left and the middle cases. $\rightarrow C \uparrow \Rightarrow$ Multiplier > 1.
- Inflation \downarrow for the right case $\rightarrow C \downarrow \Rightarrow$ Multiplier < 1.
6. Results for the Great Recession

Government spending multiplier

- Very large multiplier only around the asymptote.
- Right panel corresponds to Mertens and Ravn (2014).
Conclusions

Our findings:

- For a broad and empirically relevant range of parameter/shock configurations
 - labor tax $\uparrow \rightarrow$ hours \downarrow or hours are inelastic
 - government spending multiplier ≈ 1

- Fiscal multipliers can be very large and positive or large and negative near asymptotes.

These properties also hold in

- Specifications with preference shock only, and
- Specifications that are calibrated to Great Depression.