Old, Sick, Alone and Poor: A Welfare Analysis of Old-Age Social Insurance Programs

R. Anton Braun
Federal Reserve Bank of Atlanta

Karen A. Kopecky
Federal Reserve Bank of Atlanta

Tatyana Koreshkova
Concordia University and CIREQ

CIGS End of Year Macro Conference
December 26 2014
Motivation

- All societies must deal with the fact that some individuals will end up *old, sick, alone and poor*.

- Why?
 - Some individuals enter retirement with low wealth.
 - Significant risks after retirement.
 - Longevity
 - Medical expenses
 - Long-term care expenses
 - Spousal death
 - These risks are correlated.

BKK (2014)
Motivation

- Poverty among retirees is a challenge for society.
- Poor retirees often cannot self-insure by re-entering the labor force.

Questions:
- Is there a role for social insurance (SI) for the aged?
- What is a good program?
U.S. Social Security Program (SS)

- Biggest SI program for retirees in U.S.
- SS outlays were 4.8% of GDP in 2011 and are growing.
- A large macroeconomics literature finds that a U.S.-style, pay-as-you-go, public pension program is bad public policy:
 - **Bad in dynamically efficient OLG models** (Auerbach and Kotlikoff, 1987).
 - **Bad in dynastic models** (Fuster, Imrohoroglu and Imrohoroglu, 2007).
 - **Bad when individuals face life-time earnings risk** (Conesa and Krueger, 1999).
 - **Bad when the economy is open** (Hong and Rios, 2007).
- **Strongest argument in favor of SS:**
 - **It is even more costly to remove** (Nishiyama and Smetters, 2007).
Is there a role for social insurance?

It would be a mistake to conclude from these results that there is no role for society to provide insurance to retirees.
Means-tested Social Insurance (MTSI) for Retirees

- U.S. also offers means-tested social insurance (MTSI) to retirees.

- Some MTSI programs for U.S retirees are:
 - Medicaid
 - Supplemental Social Security Income
 - Food Stamps
 - Housing and energy assistance programs

- We assess these programs using a quantitative model of the U.S. economy and find that they are highly valued.
Means-tested Social Insurance (MTSI) for Retirees

MTSI is valuable:

- It provides good insurance against longevity risk.
- It is particularly effective in insuring against: medical expenses, nursing home expenses, spousal death and low lifetime earnings.

Why?

- The transfers induced by the means-test line up well with states where demand for the insurance is highest.
- It is cheap
 - Largest program is Medicaid: expenditures for the aged are 0.6% of GDP.
 - Second largest program is SSI: outlays for the aged are 0.3% of GDP.
Quantitative Model of U.S. Economy: Overview

- Full-lifecycle, OLG, GE model
- Households
 - become active at age 21 (period = 2 years)
- While working:
 - are married couples
 - differ by education status of members
 - face uncertainty over male and female’s labor productivity
 - choose consumption, savings, female labor supply

BKK (2014)
Households
- retire exogenously at age 65

While retired:
- married, widows, widowers
- have uncertain
 - health status
 - medical expenses
 - nursing home expenses
 - death (foreseen 1 period in advance)

- choose consumption, savings
- die with certainty at age 100
Assuming retirees foresee their death 1 period in advance allows us to:

- Capture high OOP expenses of HRS retirees in last year of life. *(3.4 times larger than other years.)*
- Eliminate accidental bequests. *(They muddle welfare effects of policy changes.)*
- Reproduce finding of Porterba et al. (2012). *(Many HRS individuals die with very low levels of assets.)*
 - 46% have less than $10,000 in financial assets
 - 50% have zero home equity
Exogenous risks faced by retirees:

- **Survival and health status**
 - Stochastic functions of age, sex, marital status, and previous health status

- **Medical expenses**
 - Do not affect household utility
 - Stochastic function of age, sex, marital status, current health status and death
 - Stochastic component consists of both
 - acute shocks
 - a small probability but large expense “nursing home” shock

BKK (2014)
Social insurance (SI) includes
- means-tested social insurance program (Medicaid/other old-age SI)
- progressive PAYG social security program (includes spousal and survivor benefits)
- Medicare (expenses are net of Medicare benefits, include Medicare earnings tax)

SI financed (along with government expenditures) by
- progressive income taxes
- payroll tax
- proportional capital income tax

No private insurance and no uncollateralized borrowing
Utility function of a working-age household is

\[U^W(c, l_f, s) = 2 \left(\frac{c/(1 + \chi)}{1 - \sigma} \right)^{1-\sigma} + \psi(s) \frac{l_f^{1-\gamma}}{1-\gamma} - \phi(s)I(l_f < 1) \]

- \(l_f \) is non-market time of the female member
- preferences vary across education types \(s \equiv (s^m, s^f) \)
- \(1 - \chi \in [0, 1] \) is the degree of joint consumption
- \(\phi(s)I(l_f < 1) \) is the utility cost of female labor force participation
Utility function of a retired household is

\[U^R(c, d) = 2^{N(d)-1} \left(\frac{c}{1 + \chi} \right)^{N(d)-1} \frac{1 - \sigma}{1 - \gamma} + \psi^R(d) \frac{1 - \gamma}{1 - \gamma} \]

- \(1 - \chi \in [0, 1] \) is the degree of joint consumption
- \(N(d) \) is the number of household members given the marital status \(d \in \{ \text{married, widow, widower} \} \).
Retired Household’s Problem

Retired household solves

$$V(j, a, \bar{e}, h, \varepsilon_M, d, d') = \max_{c, a'} \left\{ U^R(c, d) \right\}$$

$$+ \beta \mathbb{E} \left[\sum_{d''=0}^{2} \pi_j (d''|h', d') V(j + 1, a', \bar{e}, h', \varepsilon'_M, d', d'')|h, \varepsilon_M) \right\}$$

subject to ...

age j
assets a
average earnings $\bar{e} \equiv \{\bar{e}^m, \bar{e}^f\}$
health status $h \equiv \{h^m, h^f\}$
household medical expense shocks $\varepsilon_M \equiv \{\varepsilon_M,1, \varepsilon_M,2\}$
marital status $d \in \{0, 1, 2\}$

BKK (2014)
Retired Household’s Problem

Retired household solves

\[V(j, a, \bar{e}, h, \varepsilon_M, d, d') = \max_{c, a'} \left\{ U^R(c, d) \right\} \]

\[
+ \beta \mathbb{E} \left[\sum_{d''=0}^2 \pi_j(d''|h', d') V(j + 1, a', \bar{e}, h', \varepsilon'_M, d', d'')|h, \varepsilon_M \right] \}
\]

subject to

\[
c \geq 0, \quad a' \geq 0,
\]

\[
c + M + a' = a + y^R - T^R_y + T^R_r.
\]

\[
M \equiv \Phi(j, h, \varepsilon_M, d, d') \quad \text{medical expenses}
\]

\[
y^R \equiv S(\bar{e}, d) + (1 - \tau_c)ra \quad \text{income}
\]

\[
T^R_y \equiv \tau^R_y ((1 - \tau_c)ar, S(\bar{e}, d), d, M) \quad \text{income taxes}
\]

\[
T^R_r \quad \text{means-tested SI transfer}
\]
Retired Household’s Problem

- The means-tested SI transfer function represents both Medicaid and other means-tested SI transfers.

- It also captures the following features of Medicaid:
 - Medicaid requires copays.
 - Copays are capped.

- Copays \(\Rightarrow\) even retirees on means-tested SI face some medical expense risk.
Means-tested SI transfers to retirees are given by

\[T_R^R \equiv \max \left\{ y^d + \varphi M - I_R, c^d + M - I_R, 0 \right\} \]

where \(I_R^R \equiv a + y^R - T_y^R \) is cash-in-hand.
We consider a *steady-state competitive equilibrium* of a small open economy.
A Few Comments About the Calibration

- Stochastic components of the earnings and medical expense processes are not Gaussian.
- The earnings process includes an additional low earnings state which helps us
 - reproduce SS income distribution
 - improve model’s matching of bottom tail of earnings distribution
- The medical expense process includes a large NH shock which helps us
 - capture the risk of a large and persistent NH shock
 - improves model’s matching of upper tail of the medical expense distribution
A Few Comments About the Calibration

- We calibrate the model to reproduce this demographic structure:
A Few Comments About the Calibration

- Age 65 marital distribution attained with a spousal death event at age 65.

- The likelihood of the death event is decreasing with male average earnings.

- Targets the marital distribution by permanent income in the data.
A Few Comments About the Calibration

- **Consumption Floors:**
 - **Workers:** c is 15% of average male earnings or $7,100 in year 2000 dollars.
 - **Retirees:** c^d is very similar across marital groups and is approximately 16% of average male earnings or $7,600 in year 2000 dollars.

- **Means-test income thresholds:** $y^d \approx 2c^d$ chosen so model reproduces take-up rates.

- **Medicaid copay rate:** $1 - \varphi$ is 20%.

 Target: average OOP expenses of Medicaid recipients/average OOP expenses of all retirees = 0.46.
Assessment: Medicaid Take-Up Rates

- **Consumption floor** calibration
- **Target:** Take-up rates by marital status.
- **Assessment:** Take-up rates by age groups.

<table>
<thead>
<tr>
<th>Marital Status</th>
<th>Age</th>
<th>65–74</th>
<th>75–84</th>
<th>85+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Married</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>0.07</td>
<td>0.07</td>
<td>0.11</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td>0.05</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>Widows</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>0.22</td>
<td>0.19</td>
<td>0.24</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td>0.21</td>
<td>0.23</td>
<td>0.25</td>
</tr>
<tr>
<td>Widowers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>data</td>
<td></td>
<td>0.19</td>
<td>0.15</td>
<td>0.19</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td>0.17</td>
<td>0.16</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Findings

- What are the welfare effects of removing MTSI?
- Welfare is measured as an equivalent % variation in lifetime consumption.

Assumption:
- Absent MTSI society provides a *Townsendian consumption floor*
- Largest consumption floor that all households, indexed by education, agree on.
Welfare effects of removing MTSI

When MTSI is removed from our baseline economy

- **Ex-ante newborn welfare falls**

<table>
<thead>
<tr>
<th>Economy</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare, %</td>
<td></td>
</tr>
<tr>
<td>Ex-ante</td>
<td>-4.87</td>
</tr>
</tbody>
</table>
When MTSI is removed from our baseline economy

- High school educated HH dislike MTSI removal the most

<table>
<thead>
<tr>
<th>Economy</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare, %</td>
<td></td>
</tr>
<tr>
<td>Ex-ante</td>
<td>-4.87</td>
</tr>
<tr>
<td>By HH education type (female, male):</td>
<td></td>
</tr>
<tr>
<td>high school, high school</td>
<td>-6.04</td>
</tr>
<tr>
<td>high school, college</td>
<td>-2.87</td>
</tr>
<tr>
<td>college, high school</td>
<td>-1.53</td>
</tr>
<tr>
<td>college, college</td>
<td>0</td>
</tr>
</tbody>
</table>
Welfare effects of removing MTSI

When MTSI is removed from our baseline economy

- Welfare of all types indexed by male permanent earnings quintile falls

<table>
<thead>
<tr>
<th>Economy</th>
<th>Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare, %</td>
<td></td>
</tr>
<tr>
<td>Ex-ante</td>
<td>-4.87</td>
</tr>
<tr>
<td>By male permanent earnings:</td>
<td></td>
</tr>
<tr>
<td>quintile 1</td>
<td>-7.55</td>
</tr>
<tr>
<td>quintile 2</td>
<td>-5.43</td>
</tr>
<tr>
<td>quintile 3</td>
<td>-4.42</td>
</tr>
<tr>
<td>quintile 4</td>
<td>-3.65</td>
</tr>
<tr>
<td>quintile 5</td>
<td>-1.82</td>
</tr>
</tbody>
</table>
Why are welfare gains so large and so broadly based?

- Compare baseline economy to
 - economy with no medical expenses
 - economy with no earnings risk
When medical expenses are absent

- Ex-ante welfare continues to fall when MTSI is removed but now disagreement among types

<table>
<thead>
<tr>
<th>Economy</th>
<th>Baseline</th>
<th>No Medical Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ex-ante</td>
<td>-4.87</td>
<td>-0.26</td>
</tr>
<tr>
<td>By HH education type (female, male):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high school, high school</td>
<td>-6.04</td>
<td>-0.34</td>
</tr>
<tr>
<td>high school, college</td>
<td>-2.87</td>
<td>-0.16</td>
</tr>
<tr>
<td>college, high school</td>
<td>-1.53</td>
<td>0.03</td>
</tr>
<tr>
<td>college, college</td>
<td>0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

BKK (2014)
Roles of medical expenses and life-time earnings risk

When earnings risk is absent

- Welfare of all types now rises when MTSI is removed

<table>
<thead>
<tr>
<th>Economy</th>
<th>Baseline</th>
<th>No Medical Expenses</th>
<th>No Earnings Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex-ante</td>
<td>-4.87</td>
<td>-0.26</td>
<td>0.64</td>
</tr>
<tr>
<td>By HH education type (female, male):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>high school, high school</td>
<td>-6.04</td>
<td>-0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>high school, college</td>
<td>-2.87</td>
<td>-0.16</td>
<td>1.33</td>
</tr>
<tr>
<td>college, high school</td>
<td>-1.53</td>
<td>0.03</td>
<td>1.15</td>
</tr>
<tr>
<td>college, college</td>
<td>0</td>
<td>0.05</td>
<td>1.92</td>
</tr>
</tbody>
</table>
Reforming MTSI for Retirees

- Given that MTSI is highly valued by HH’s in our economy would they like to increase its scale?
• **All** newborn like a 30% increase in MTSI if it is financed with a higher payroll tax.

<table>
<thead>
<tr>
<th></th>
<th>U.S. economy</th>
<th>30% up Payroll Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welfare, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.54</td>
</tr>
<tr>
<td>By household education type (female, male):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>high school, high school</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>high school, college</td>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td>college, high school</td>
<td></td>
<td>0.48</td>
</tr>
<tr>
<td>college, college</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Means-tested SI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>take-up rates</td>
<td>12.9</td>
<td>23.7</td>
</tr>
<tr>
<td>govt. outlays, % GNP</td>
<td>0.75</td>
<td>1.44</td>
</tr>
</tbody>
</table>
Reforming MTSI for Retirees

- Newborn households dislike 30% increase financed by a higher income tax instead.
- Disagreement over a 30% decrease (lowering income tax).

<table>
<thead>
<tr>
<th>Welfare</th>
<th>U.S. economy</th>
<th>30% up Income Tax</th>
<th>30% down Income Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td></td>
<td>-0.44</td>
<td>0.04</td>
</tr>
</tbody>
</table>

By household education type (female, male):

- high school, high school
 | 30% up Income Tax | 30% down Income Tax | |
 | | |
 | high school, college | -0.24 | -0.13 |
 | college, high school | -0.91 | 0.45 |
 | college, college | -0.69 | 0.28 |
 | | -1.20 | 0.65 |

<table>
<thead>
<tr>
<th>Means-tested SI</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>take-up rates</td>
<td>12.9</td>
<td>24.1</td>
<td>6.0</td>
</tr>
<tr>
<td>govt. outlays, % GNP</td>
<td>0.75</td>
<td>1.50</td>
<td>0.30</td>
</tr>
</tbody>
</table>

BKK (2014)
Conclusion

- Removing MTSI in a quantitative model of the U.S. economy produces a large welfare loss.

- There are broad-based welfare gains if the scale of MTSI is increased by 30% financed by a payroll tax.

- If SS was removed, the fraction of retirees living off MTSI transfers would increase significantly but all ex-ante types would be better off.